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Abstract. A new approach to evaluating the static lattice energy of any given Wigner lattice 
is proposed. The method is much simpler than the traditional one and the results are much 
faster to evaluate. The new approach is applied to two-dimensional triangular lattices 
where i t  is shown that the triangular lattice is more stable than the square lattice. Three- 
dimensional hexagonal lattices are also investigated. In addition, we have placed many 
of our considerations on a rigorous mathematical footing. 

1. Introduction 

In 1934 Wigner introduced the concept of an electron gas bathed in a compensating 
background of positive charge as a model for a metal. He stated that in the static case 
the electrons would form a BCC lattice in the background of positive charge. In 1938 
he presented a quantitative treatment of this problem, following a calculation by Fuchs 
(1935) who showed that for a given number density, the BCC lattice was the most stable 
of three common cubic structures, namely sc, BCC and FCC lattices. The evaluation 
of U(1attice)-the energy of an electron in a given lattice-involved finding by some 
means or other the difference of two divergent quantities. Of these, one term, U, ,  
measures the interaction of an electron with all the other electrons on their lattice sites. 
The second term, U,, measures the interaction of an electron with the compensating 
positive background charge. Thus 

U(1attice) = U,  - U, 
where 

and 

In (2)  a, is some lattice parameter and the summation is over all integers ( l , ,  f,, I,) 
relevant to the given lattice. In (3), n is the number density and R is the normalisation 
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volume of the given lattice. For the three cubic lattices it is easily shown that in terms 
of e2/an we have (Zucker 1975) 

1 (- 1 )  m + n + p  

U1 (FCC) = E’ ( m 2 + n 2 + p ’ ) l : 2 + z ‘  ( m 2 + n 2 + p 2 ) l 1 2  = a ( l ) + d ( l )  ( 5 )  

(6) 

Each of (4), ( 5 )  and (6) contains the divergent ‘sum’ a(1).  Here and throughout E‘ 
indicates that the terms in which m, n and p are simultaneously zero are omitted. 
While U, is also divergent, if the ‘correct’ procedure is followed the divergencies can 
be made to cancel appropriately and finite results are obtained. A most detailed 
account of this procedure is made by Coldwell-Horsfall and Maradadin (1960) who give 

(i) U ( s c )  = -2.837 297(e2/a0) 

(ii) U(FCC) = -4.584 875(e2/a,) ( 7 )  

( i i i )  U(BCC) = -3.639 240(e2/a,). 

In the above, a, is the side of the cube. In terms of r s ,  the radius of a sphere of volume 
equal to the volume per electron, we have 

+a; = $rr:( BCC) 1 3 - S  3 a i  = ;7rr;(sc) aQO-37rrs(FCC) 

and thus 

( i )  U(sc)  = -1.760 119e/rs 

(ii) U(FCC) = -1.791 753e/rs 

(iii) U(BCC) = -1.791 860e/r, 

in which the BCC lattice appears as the most stable. 
With some considerable surprise, the present authors have noted that the numbers 

appearing in (7 )  are precisely the values of U ,  alone when evaluated by a method 
suggested by Zucker (1976). This was to consider a(2s):= E’(m2+ n2+p2)-’, a three- 
dimensional analogue of the Riemann zeta function. Now a(2s)  is clearly analytic for 
Re s > i  and has a simple pole at s=$. Also a(2s) possesses a simple functional 
equation, a(2s)  = K(s)a(3  -2s)  where K ( s ) : =  ~ ~ ’ - ~ ’ ~ r ( ; - s ) / F ( s ) ,  which allows for 
its analytic continuation to the region Re s < 3. 

This and other techniques allow a very rapid evaluation of all the sums in (4)-(6). 
The sums c(1)  and d(1)  are actually conditionally convergent when summed in the 
appropriate order (Borwein et al 1985). 

Since it is much easier to evaluate the analytic continuations of the corresponding 
lattice sums without bothering to subtract divergent integrals ‘the right way’, the 
question arises as to whether using the former procedure is valid for all Coulomb 
lattices. In 0 3 we shall attempt to justify doing just that. First, however, we shall 
detail the square lattice calculation, both by the traditional method and by our suggested 
method. 
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2. The square lattice 

Throughout we shall work in units of e * / a , ,  where a.  is the length of side of the unit 
square in the lattice. The energy per electron may be written as 

U(sq) = U,(sq) - U,(sq) 

where 

U,(sq)=C’ ( m ’ + n * ) - ’ / ’  U2(sq) = 5 5  (x2+  y 2 ) - ” ’  dx  dy. 

Consider first U , .  Using the relation 

I ‘ (n)z -“  =I,’ t“-’ exp(-zt) d t  

we write U ,  as 

U 1 -  - T-’/’L’ lox t - ’ l 2  exp[-(m2+ n 2 ) t ]  d t  

(9) 

and split the range of integration into two parts, (0, 7 )  and (T, a). Thus U ,  = U, ,  + Ulz 
where 

In (1 1) we set t = T X  and hence 
5c 

U ,  = c’ 5 ?Cl’’ exp[ - (  m’ + n’) d] dr = C’ 4-1/2[ T (  m 2  + n’)] (13) 
1 

where 

&( t )  := X “  exp( - x t )  dx  I,= 
are integrals computed by Misra (1940) and Born and Misra (1940). In U12 we 
interchange sum and integral and remove the restriction on the sum by subtracting the 
m = n = 0 term. Thus 

U,’ = T - ’ / ~  c 1; t C 1 I 2  exp[-( m 2 +  n2)t]  d t  - r - I I 2  j: t c 1 l 2  dt. (14) 

Now we use the Poisson transformation formula 

which we substitute into (14). We then perform the second integration in (14) and 
arrive at 

r n  

U12= T ~ / ~ C  J t - 3 / 2 e x p [ - ~ ’ ( m 2 + n 2 ) / t ] d t - 2 .  
0 



1522 D Borwein et ai 

We replace the restriction on the sum by adding back the m = n = O  term, and on 
substituting t := T / X  we have 

U 1 2 = c ‘  4 - 1 , 2 [ ~ ( m g + n ‘ ) ] - 2 + ~ 1 ’ 2  1; t -3’2d~.  

On adding VI,  and U12 
f r r  

U ,  = 2 C ’  ~ - I , Z [ X ( m ‘ + n ’ ) J - 2 + T ” 2  J tC3” dt. 
0 

Now we consider U,. Using (9) we rewrite 

We change to polar coordinates to evaluate the interior double integral. This leads 
easily to 

and so 

where the integral is again divergent. Subtract (19) from (17) and ‘cancel’ the identical 
divergent integrals to obtain 

u ( s q )  =-4+2[4q1-1 ,2( . r r )+4~-1 ,2(27~)+44-1 , , (4~)+84-1 ,2(5~)+ .  * . I  
on summing over equal k = m’+ n 2 .  From the tables prepared by Born and Misra 
(1940) we find 

4-1,2( T )  = 0.012 189 & - 1 , 2 ( 2 ~ )  = 2.77 x lo-“ 4-1/2(4T) = 2.7 X lo-’ 

and subsequent terms are less than lo-*. This gives 

U ( S ~ )  = -3.900 265 (21) 

as calculated by the conventional method. However, for Re s > 1 the sum a2(2s) = 
Z’ ( n 2 +  m2)-’ factors as 4 2 s )  = 4 f ( s ) P ( s )  where 

f ( s ) = 1 + 2 - ’ + 3 - ‘ + 4 - ‘ + . .  . ( R e s > l )  

p ( S ) =  1 - 3 - * + 5 - ’ - 7 - y + .  . . (Re s > 0). 

This result is often ascribed to Hardy (1919) but goes back at least to Lorenz (1871) 
and is derivable from Jacobi (1829). Thus we claim that 

U(sq) = U,(sq) = a J l )  = 45($)p($) = -3.900 264 924.  . . 
in complete agreement with (21). Of course, f ( f )  cannot be evaluated from the previous 
series but may be found from 

( 1  - 2’-’)5( S )  = 1 - 2-s + 3-’ - 4- ‘ .  . , (Res>O) .  
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Clearly the second approach to evaluating U(sq) is more satisfactory than the long 
drawn-out traditional method and we shall now attempt to justify its correctness for 
all electron lattices. 

3. The general principle 

We start by observing that the previous manipulations were not arbitrary, but rather 
were stable since any answer might be obtained by inappropriate processes. Some 
regular limiting procedure must be undertaken to guarantee a robust answer. We 
would like to propose the following principle: the rearrangements used should depend 
only on the geometry of the underlying lattice and not on the power s in the law of 
interaction. 

The consequence of this principle is that we look for an appropriate analytic 
function for U(1attice:s) and take as our answer the value of this function at s =+. 
We argue that this forces the answer to be alal(l)  where a1,,(2s) is the d-dimensional 
sum over the lattice sites: 

a , , , (2s )=~ ' ( I :+ l :+ .  . . + l : ) - s  

in which the sum represents aIa,(2s) for Re s > d/2.  This has an analytic continuation 
for 0 < Re s < d/2,  which, for the d-dimensional simple cubic lattice, is obtained via 
the functional relation 

T - ~ r ( ~ ) ~ l a I ( 2 ~ )  = T r - d ' 2 r ( d / 2  - s)a,a,(d -2s).  

Formally 

U(1attice:s) = aIa,(2s) - U z ( s )  (22a) 

where 

while c is a constant appropriate to the lattice and s1 is some volume in d-dimensional 
space which gives electrical neutrality. Now split U, into the region inside the unit 
sphere and outside the unit sphere thus: 

U,( s )=  U ; ( s ) +  U Z ( s )  

and adding on the finite integral U,'(s) when O < R e s < d / 2  to both sides of (22a) 
we have 

(226) U(1attice:sl-t U ; ( s )  = a1,,(2s) - U ; ( s ) .  

Now U ' ( s )  may be integrated to give for Re s < d / 2  

whereas, for Re s > d / 2  the other integral, U ; ,  is finite and by direct computation, 
or by appealing to the central symmetry of the integral, has the value C/(2s - d ) .  Now 
we argue as follows. The LHS of (22b), namely U(lattice:s)+ C / ( d  - 2 s )  is an analytic 
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continuation of the R H S  of (226 )  for Re s < d / 2 .  Thus, by comparing the two we have 

U(1attice:s) = alar(2s) 

for Re s < d / 2  and hence for s = $ we have our result. By considering a precise limiting 
process we shall demonstrate why a unique ‘answer’ is to be obtained. 

We shall consider the following model in d dimensions. In our model point charges 
will be located at lattice sites and these will be surrounded by an equal amount of 
opposite charge uniformly distributed over hypercubes centred at the lattice point and 
of side equal to one lattice spacing. This is illustrated below in two dimensions where 
the shaded portion represents positive charge of value equal to the point negative 
charge but uniformly distributed over a square. 

I 

We shall thus examine the precise limiting procedure: 

( 2 3 )  

although a priori this limit need not exist. This procedure maintains electrical neutrality 
throughout the limiting process. Further the model has zero-dipole moment, and in 
three dimensions zero quadrupole moment as well. 

Consider first the multidimensional integral P N ( s ) .  Writing x, = ( N  +i)X, we have 

N + I / 2  v+1/2 

(x;+x:+. . .+x i ) - ’  dx,  . . . dxd 
- (  N t l / 2 )  

-[ . . .  1 
- (N+1/2 i  

= lim [ a N ( x ) - p P N ( s ) ]  
N -iT 

Now Z(s) may be rewritten as 

W‘l 

where wd is the pyramidal region /X,I S xd S 1. Making the substitution XI = &x, we 
have 
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where 

dx ,  . . . dXd-1 
C(+{’ - 1  . . . { ’  - 1  ( l + X i + .  . .+x:-l)y 

and  this integral clearly converges for Re s > 0. Thus 

2d 
ff” ( s )  = LYN ( s )  - ( N  + 9 d - * , 5  - C ( S )  d - 2 s  

and the whole of the RHS of ( 2 5 )  is meromorphic for Re s > O  with a single simple 
pole at s = d / 2 .  Note that 

~ O ( S )  = 2 2 ’ - d 2 d C ( ~ ) / ( d  - 2 s )  ( 2 6 )  

gives an  analytic continuation of the integral inside the unit hypercube. For Re s > d / 2 ,  
u N ( s ) ,  as given by ( 2 3 ) ,  is infinite since its defining integral is infinite. Then by ( 2 5 )  
for R e s >  d / 2  

lim c r N ( s ) + p 0 ( s )  = lim a N ( s ) + p o ( s )  
N - x  N -3 )  

= a, , , (2s )  + P o ( s )  (27)  

since p N ( s )  tends to zero. We use ( 2 6 )  to see that a1, , (2s )  + po(s) is analytic in Re s > 0. 
The principle of analytic continuation allows us to conclude that ( 2 7 )  continues to 
hold in any half-plane in which the left-hand side exists and is known to be analytic. 
However, for O<Re s <  d / 2 ,  po(s) is a finite integral. Thus in the appropriate strip 
l imN+= u N ( s )  = a1, , (2s )  for the particular limiting process we have undertaken-if it 
is, in fact, true that 1imN+= u N ( s ) + p o ( s )  exists and is analytic in the appropriate 
half-plane (or at least for ;< Re s < d / 2  with continuity at i). 

Now, for all lattices in two dimensions, u N ( s ) + p o ( s )  can be shown to tend to an  
analytic limit in the right half-plane. In the appendix we prove this for the square 
lattice. While it might seem reasonable to presume that this holds generally, it is in 
fact false. Considerations similar to those given in the appendix show that, for the 
simple cubic lattice in three dimensions, the limit is analytic for 4 < Re s < but is 
discontinuous at f. Indeed lim,,,,,, 1imN+= u N ( s )  = aIat( l )  (the ‘correct’ answer) but 
differs by n/6 from 1imN-= uN(;) (the rectangular limit). 

In addition, in two dimensions one can also show that the limit over expanding 
circles, namely the limit as N -$ cc of 

T ~ ( s ) =  , E ,  ( n ’ + m ’ ) - ‘ -  I{ (x2+y’)-’ d x  dy 
I s r n - + m - ) s  N 

I S ( . Y ’ + \ ~ ~ ) < N  

is analytic for Re s > f .  As a consequence, when the integral inside the unit circle is 
reintroduced, the corresponding limiting value at s = 4 is also 4l(f)p(f) .  

4. Additional examples 

Granted the general applicability of the previous meta-principle-which we have 
illustrated already for sc, FCC, BCC and square lamina lattices-we can easily determine 
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U (  lattice) for many other lattices. Thus for the two-dimensional (equilateral) triangular 
lattice, tri, we know that 

, 

and the standard factorisation given in Zucker and Robertson (1976) and Borwein 
and Borwein (1987), yields from (26) 

U(tri) = a,,,( 1) = 6l(i)L_,(+) = -4.213 422 7006 . . . 
where 

L-3= 1 -2- '+4- '  - 5- i  +. . 
in terms of the lattice parameter a,. In terms of rs, the radius as before of a circle 
equal in area to the area per electron, we have 

ai = .rrrf(sq) (&/2)ai  = mfttr i )  

so that 

U(sq) = -2.200 488 843e2/ rs U(tri) = -2.212 205 221e2/rs 

and the static triangular lattice is energetically the more stable. 
We have also investigated other three-dimensional lattices, in particular various 

hexagonal lattices. A simple hexagonal lattice is a structure formed by stacking planes 
of two-dimensional triangular lattices directly above each other. The direction of 
stacking is known as the c axis and the separation of planes in terms of the nearest- 
neighbour distance, R, in the triangular lattice is called the axial ratio, c. If particles 
on such a lattice interact with an r-' potential, it is simple to show that the appropriate 
lattice sums are given by 

Using our principle the energy of such a lattice of electrons is given, in terms of e'/ R, 
by 

U(hex) = H (  1 : c). 

By the techniques described in Zucker (1976), after some detailed algebra, H (  1 : c)  
can be converted to rapidly converging sums and double sums of cosech functions: 

-16 log 2 a r c  
H ( l : c ) =  

3c 

1 cosech( c.rrm/&) cosech( m' + n'/j)"'c.rr 
+ 2 ?  c / J 5  + 4  ? 7 c(m2+ n2/3)1/2 

c o s e c h ( 2 ~ m / c )  cosech(4m2/3 +4n'/c2)''' 
2m/c + 4 ? ?  (4m2/3+4n'/c2)'/2 

J5 cosech(&.rrm/c) 
&m/c 

-- (2  f (-1) 
C I  

cosech(3m2+ 3nZ/ c * ) " ~ I T  

(3m2 + + 4 i i ( - l ) " "  
I I  
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We have evaluated these for several values of c (table 1 ,  column 2 ) .  The only 
corresponding results we know in the literature are those given by Hund (1925,  1935) 
for c = 2 and c = J(!).  The latter value for c is the so-called ideal ratio. Hund’s values 
were calculated by the traditional Ewald method and  the numerical accuracy was low. 
He gives 

H (  1 : ~ ‘ ( 4 ) )  = -2.238 H ( 1 : 2 ) = - 1 . 7 9 6 .  

As in the case of the three cubic lattices we convert the values in terms of e ’ / R  into 
terms of e 2 / r s .  For the simple hexagonal lattice the volume of a unit cell is 3&cR3,/2 
and with three electrons per cell the volume per electron is & c R 3 / 2 .  Hence 

& c R 3 / 2  = 4 ~ r : / 3  r J R  = ( 3 & c / 8 ~ ) ‘ / ~ .  

Multiplying H ( 1 :  c )  by ( 3 & c / 8 ~ ) ” ~  yields U(hex) in terms of e 2 / r s  (table 1, column 
3 ) .  It is seen there that U(hex) has a minimum for c near 1 .  The speed with which 
H (  1 : c)  may be computed using ( 2 7 )  prompted us to locate the minimum more precisely 
and  it occurs near c = 0.93 (table 2 ) .  

We have also evaluated U for the hexagonal close-packed ( H C P )  structure, which 
may be regarded as two equal interpenetrating hexagonal crystals with ideal axial 
ratios, one lattice based at  the origin (0, 0,O) and the other at (t, i, f). The lattice sums 
for such a structure in terms of R may be written 

H C P ( ~ S )  = ~ ( 2 s  : J(4)) +C [(m - 4 ) ’ + 3 ( n  -:)’+:( p -$)’I-~ 

= H ( 2 s  :J(4,) + H * ( 2 s ) .  

Table 1. 

I a -3.263 230 504 -1.531 505 030 
9 -1.747 971 578 16 
1 a -3.143 633  242 -1.771 8 2 6 6 8 3  
1 -2.995 71 1 953 -1.771 3 8 9 4 7 4  

- 1.727 636 634 
2 -2.502 936 140 -1.661 251 716 
n 
3 -2.238 722 127 -1.558 866 728 
4 -1.795 017 494 -1.337 291 317 

-3.253 618 321 - 

3 -2.730 799  747 

Table 2. 

C 2  U( hex),’( e’/ r , )  

0.91 -1.774 209 795 
0 .92  -1.774 594 877 
0.928 - 1.774 642 569 
0 .93  -1 .774  6 4 0  829 
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Again our principle gives U ( H C P ) = H C P ( ~ )  in terms of R for an electron lattice. 
H ( l  :d($)) is given by (27) and in table 1. In terms of cosech sums we have the rapidly 
convergent identity: 

* c o s e c h ( m ~ m / 3 )  
1 m 

H*( 1)=-2&rr/9-C 

2J"j Lc cosech(Jq.rrm 1 c o s e c h ( m r r m )  
m -- c +T? m 3 1  

cosech( (8m' /3+8n2) ' '2~)  
(8m2/3+8n')''' 

+ 4 f i  f f [ 1 + ( - 1 ) + "1 
I 1  

4 f i " "  cosech( ( 8m'/3+8n2/9)"'rr) 
(8 m'/ 3+8 n'/9) 

--CC [1+(-1)"'"3 
3 I I  

For the HCP structure the volume of a hexagonal cell is 3&R3 but there are six electrons 
per cell. Hence we have 

fiR3/2=4nr:/3 r,/ R = ( 3 d / 8 ~ ) " ~  

and we obtain 

U(~cp)=-3 .241  858 662e2/R=-1.791 676 267e2/rs. 

Foldly (1978), by the traditional method, found that U(~cp)=-1 .791  676 24e2/r, 
and noted that it the axial ratio is 1.0016 times the ideal value then the last two figures 
read 90 instead of 24, and he claims this is the real minimum. 

We present one final example of the diamond lattice. This may be considered as 
two equal interpenetrating FCC lattices, one based on ( O , O ,  0) the other on ( f ,  i. a). In 
terms of the cube side of an FCC lattice the diamond lattice sums are easily shown to 
be 

di(2s) = F C C ( ~ S ) + ~ ~ ' - ' [  Bee( 2s) -sc( 2 S ) ]  

and again our principle gives U(di)=di( l )  in terms of e'/ao. Using (4)-(7) 

a ( l ) + 3 c ( l ) + d ( l )  
2 

di( 1)= =-5.386 789 045. 

For the diamond lattice the volume of a cubic cell is U:  and this has eight electrons 
per cell. Hence 

a i /  2 = 4m,3 r,/ a,, = (31 3 2 rr ) ' I 3  

and we obtain 

U(di)=-1.670 851 406e/r, 

in complete agreement with Foldy's (1978) value obtained conventionally. For all the 
three-dimensional structures considered the BCC remains energetically the most stable. 
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Appendix 

Let 
N + I / 2  

ll (x’+ d x d y  y’)” . 
N N  

a N ( s )  = (m2+n’)-’  - 
- N  - N  

We now show that 1imN-= u N ( s )  exists, is analytic for 0 < Re s < 1, and equals 
a2(2s),  the analytic continuation of the infinite series. We consider a bounded region 
0:= {slRe s > c > 0, Is1 < R } .  All order terms will be uniform with respect to s in  O. 
We require a lemma. 

Lemma. I f f  is any twice continuously differentiable function 

where 

M =A sup  If”(t)l. 
o r r s 1  

This follows from the trapezoidal rule or  the Euler-MacLaurin summation formula. 

Now recall from (24) and (25) that the integral on the right-hand side of ( A l )  is equal 
to 

(N +;)2-2r  

4 (1  + t 2 ) - ’  d t  
1 - s  

which also supplies an analytic continuation of the original integral in the right 
half-plane. Thus 

N 

= 8  ( N 2 + n Z ) - ’ + 4 N ~ ~ “ ( 1 - 2 - ’ )  
n = 1  

+”-‘ j o l ( l + t ’ ) - ‘ d r  { N S - 1  [ ( 1 + & ) 2 - 2 s - ( 1 - - 3 2 - 2 y ] }  

8 
- - - N2i-1 [ O( 7$)] (by the lemma) 
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Hence S N ( s ) : =  O ~ ( S ) - C T - ~ ( S )  is analytic in R and 1 8 N ( ~ ) l s  M W 2 ' - '  where M 
is independent of s in n. It follows that 

where, by the Weierstrass M test, 6(s)  := l imN+x a N ( s )  - a o ( s )  is analytic in R and 
so for Re s > 0. However 

-1 /2  

d x  dy 
d s ) =  - (x2+y2)' 

- I / ?  

is analytic only for 0 < Re s < 1. Now for Re s > 1, 6(s)  can be explicitly evaluated 
from (25) to give 

( N + $ ) 2 - ' ' -  1 2-2s 
(3) 6 ( s )  = a2(2s) - lim 4C(s)  

N-W 2 - 2 s  

so that 

C(s)2Zs-2 
6 ( s )  = ~ ~ ( 2 s )  + 4  -- 

2-2s 

where 

By analytic continuation (A2) holds for Re s > 0 since all three functions in (A2) are 
meromorphic for Re s > 0. Now for 0 < R e  s < 1 one may explicitly integrate uo to  
obtain ao(s) = -4.22'-2C(s)/(2-2s).  Hence for O <  Re s < 1 

lim a N ( s )  = S ( s ) + u o ( s )  = a2(2s) 
N - . W  

which gives the desired result. (Note that, for Re s > 1, u N ( s )  =cc for each N.) 

Nore added in p r m J  Our  attention has  been drawn to a paper by Bonsall and  Maradudin (1977). They 
have calculated the lattice energy of two-dimensional crystals by the traditional method. Their results a n d  
ours agree precisely. 
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